
Abstract. The Hohenberg±Kohn theorems in ``Inhomo-
geneous electron gas'' established a whole new perspec-
tive for the study of electronic structure theory and
marked the birth of modern density functional theory
(DFT). In our view, DFT and wavefunction theories
complement each other. Starting with the invention of
the Kohn±Sham method a fruitful synthesis of DFT and
wavefunction theories took place and the most powerful
computational tools currently available are combina-
tions of both methods. The Hohenberg±Kohn theorems
inspire the quest for simple density functionals of
increased accuracy. We believe that the synthesis of
accurate density functionals and computationally e�-
cient wavefunction methods will continue to dominate
electronic structure theory.
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1 Introduction

The electronic structure of molecules and atoms has long
been at the focus of chemists' interests. Soon after the
electron was discovered in 1897, electron theories of
valence were developed [1, 2]. However, at that time,
nothing was known about the driving force behind the
formation of a chemical bond or an ion. The discovery
of quantum mechanics in 1925 made it possible to
address the fundamental questions of chemistry. SchroÈ -
dinger's equation [3] became the central point in
electronic structure theory. In 1927, Condon [4] gave a
quantum mechanical explanation of the bond in H2 and
initiated molecular orbital theory. In the same year,
Heitler and London [5] developed the valence-bond
description of H2.

With the development of computers and e�cient al-
gorithms, remarkable advances have been made in the
calculation of wavefunctions. The starting point in

conventional wave-mechanical treatments of electronic
structure is the Hartree±Fock approximation, which is a
molecular orbital type of approximation. In Hartree±
Fock theory, the exchange energy is calculated exactly,
but electron correlation is completely neglected. We
understand now that this treatment often leads to an
unbalanced description. A typical example is the rupture
of a covalent bond. The correlation energy is larger in
magnitude in the molecule compared to the atoms, and
neglecting it introduces signi®cant errors in the dissoci-
ation energy. Unfortunately, accurate calculations of the
correlation energy using wavefunction techniques are
still severely limited because of the steep scaling of the
computational e�ort with molecular size.

Modern density functional theory (DFT) was born
with the title paper and was developed in parallel with
wavefunction methods. The Kohn±Sham method [6] is
an example of a uni®cation between pure DFT methods
and wavefunction theory, a synthesis that has lead to
some of the most powerful tools in computational
quantum chemistry.

2 Early work in DFT

Shortly after the SchroÈ dinger equation had been formu-
lated it became obvious that ®nding its solution for
the most simple atoms and molecules is a challenging
problem. Back in the early days of quantum mechanics
even the independent-particle problem posed to be
a di�cult task. In 1927, Thomas [7] and Fermi [8]
independently introduced an approximation which
avoids the calculation of single-particle orbitals. In the
Thomas±Fermi approach, the electron density appears as
the variational degree of freedom in an equation for the
ground-state energy. For a given external potential v(r),
Thomas and Fermi introduced the minimization problem
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l denotes the chemical potential which is adjusted such
that the electron density q integrates to the desired
number of electrons (N).

U q� � � 1
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approximates the electron±electron interaction energy
Vee. The remarkable step taken byThomas andFermi was
to approximate the kinetic energy of a Slater determinant
(TS) by a functional of the electron density, i.e.,

TS q� � � 3
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This expression gives the exact kinetic energy for a
homogeneous electron gas of noninteracting electrons.

In 1930, Dirac [9] proposed that a density functional
for exchange be added to the Thomas±Fermi energy
expression (Eq. 1). Dirac's exchange functional
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is identical to the local density approximation (LDA) [6]
for exchange.

These early steps in DFT (for a review see Ref. [10])
were too crude for chemical applications since, as later
shown (see Ref. [11] and references therein), no chemical
binding can be obtained within Thomas±Fermi theory.
In 1951, Slater [12] derived a local approximation to the
nonlocal exchange operator in the Hartree±Fock equa-
tions. His single-particle equations, in which the kinetic
energy is evaluated exactly, are precursors of the Kohn±
Sham equations [6]. A method which has an even greater
similarity with the widely used Kohn±Sham scheme was
proposed by GaÂ spaÂ r [13]. GaÂ spaÂ r used the LDA for the
exchange energy in the Hartree±Fock approach and
derived the corresponding self-consistent equation.

3 The paper on the inhomogeneous electron gas

The early density functional approximations were not
deduced from SchroÈ dinger's equation by a series of well-
understood approximations. Rather they were based on
an intuitive physical picture of electronic systems. As
such, these approximations cannot be systematically
improved, and it was not clear at the time if density
functionals could in principle be exact.

The lack of a theoretical framework certainly did not
promote the development of density functionals. This
situation changed radically in 1964 with the paper of
Pierre Hohenberg and Walter Kohn. Hohenberg and
Kohn established a one-to-one correspondence between
electron densities of nondegenerate ground states and
external local potentials, v�r�, which di�er by more than
a constant. All physical properties obtainable with v can
therefore be expressed in terms of the electron density. It
was thus established that, for example, the Thomas±
Fermi approximation to the kinetic energy can in prin-
ciple be re®ned to yield arbitrary precision. Hohenberg
and Kohn de®ned the density functional F �q�

F q� � � w q� �jT̂ � V̂ eejw q� �
 �
; �5�

where w denotes the nondegenerate ground-state wave-
function which yields q, and V̂ ee is the electron repulsion
operator. Having introduced the functional F �q�, Ho-
henberg and Kohn showed that for a given external
potential, v, the ground-state density minimizes the
energy functional

Ev ~q� � �
Z

d3r~q�r�v�r� � F ~q� � : �6�

~q denotes an appropriate trial density which integrates
to the correct particle number. The problem of ®nding
the ground-state energy for a given external potential
has hereby been completely reformulated in terms of the
electron density which is a function of three variables
regardless of the number of electrons. There is, however,
no systematic way of generating practical approxima-
tions to F �q�. Nevertheless, the knowledge that such a
functional exists has greatly motivated physicists and
chemists ever since.

For certain limiting cases, Hohenberg and Kohn were
able to construct the functional F �q�. They showed that
F �q� can be expressed in terms of the electronic polari-
zability for densities of the form q�r� � q0 � ~q�r� with
~q�r�=q0 � 1. Furthermore, they formulated the gradient
expansion, valid in the slowly varying limit, and pre-
sented a scheme by which the gradient coe�cient can be
obtained from the nth-order �n � 1; 2; . . . ;1� polar-
izabilities of the system. These two construction schemes
for F �q� have inspired subsequent approaches to devel-
oping approximate density functionals.

An important extension of the original Hohenberg±
Kohn approach has been proposed by Levy [14, 15]
based on earlier work by Percus [16]. The functional F �q�
of Hohenberg and Kohn is de®ned only for densities
which are obtained from a nondegenerate ground-state
wavefunction corresponding to an external local poten-
tial. Levy introduced a functional F

F q� � � min
w!q

wjT̂ � V̂ eejw

 �
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where w! q means that the search extends over all
antisymmetric wavefunctions yielding q. Obviously, this
functional is de®ned for any density which can be
obtained from an antisymmetric wavefunction. F can
then be used in Eq. (6) to obtain the ground-state energy
even if the ground state is degenerate.

4 The Kohn±Sham equations: a synthesis
of wavefunction theory and DFT

Following the Hohenberg±Kohn paper, a successful
synthesis was made between DFT and wavefunction
theory. Useful approximations to the kinetic energy as a
functional of the electron density are di�cult to obtain.
The kinetic energy is of the same order of magnitude as
the total energy, and even small errors in the absolute
value of the kinetic energy can lead to unacceptably
large energy errors upon reactions or other chemical
transformations.
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The Hohenberg±Kohn theorems ®nd a very impor-
tant application in the derivation of the Kohn±Sham
equations, in which the problem of approximating the
noninteracting kinetic energy (TS) is eliminated by in-
troducing single-particle orbitals ui. The exact electron
density is written as the electron density of a Slater de-
terminant,

q�r� �
Xocc

i

ui�r�ui�r� : �8�

The ground-state energy is split up according to

E � TS �
Z

d3r v�r�q�r� � U q� � � EXC q� � ; �9�

where EXC � T ÿ TS � Vee ÿ U is the exchange±correla-
tion energy, and TS is the kinetic energy of the
determinant formed from the orbitals ui, i.e.,
TS � ÿ1=2

Pocc
i huijDjuii. The variational equation

(Eq. 6) is then simply solved by requiring that

dE
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The resulting single-particle eigenvalue equations are the
Kohn±Sham equations. The Hohenberg±Kohn theo-
rems ensure that the exchange±correlation energy in
Eq. (9) is a functional of the electron density.

5 Some developments in quantum chemistry initiated
by the Hohenberg±Kohn paper

It is not practical to give a complete account of the
impact of the Hohenberg±Kohn paper on quantum
chemistry. Therefore, in this section, we mostly focus on
a few aspects which in¯uenced our own research. For a
general overview we refer to Refs. [11, 17±19].

After the computational resources became available
and reliable algorithms for the solution of the Kohn±
Sham equations were in place, the LDA for exchange
and correlation employed in the Kohn±Sham scheme
turned out to be a powerful tool for electronic structure
calculations [18]. Consequently, a large fraction of the
early work in DFT focused on the question why LDA
works so well even for very inhomogeneous systems. The
exchange±correlation hole, which surrounds an electron,
became the key in understanding the success of the LDA
to EXC. It turned out that many important constraints
satis®ed by the exact exchange correlation hole are also
satis®ed by its LDA (for an overview we refer to Refs.
[11, 17, 18, 20±24]. Based on the understanding of the
LDA improved approximations for exchange and cor-
relation, known as generalized gradient approximations
(GGAs) [25±31], were developed. GGAs reached a level
of accuracy which made the Kohn±Sham method the
most e�ective tool in quantum chemistry. An additional
boost in accuracy was obtained with hybrid methods
[32±39] in which a fraction of exact exchange (calculated
from the Kohn±Sham wavefunction) is added to density
functional approximations for exchange and correlation.
This ensures that the long-range part of the exchange±
correlation hole is accounted for. Recently, a new gen-

eration of kinetic energy density dependent functionals
appeared in the literature [40±46]. In these methods, the
kinetic energy density of the Kohn±Sham determinant
and the electron density are employed to model EXC.
These functionals challenge the accuracy of hybrid
schemes but avoid the computationally unfavorable
evaluation of exact exchange.

In chemistry, excited states and time-dependent phe-
nomena are often of interest. Although the Hohenberg±
Kohn variational principle applies only to ground states,
various extensions of DFT have been developed over the
years which successfully model excitation energies and
time-dependent phenomena (for an overview see Refs.
[47±49]).

For us, a very exciting development initiated by the
Hohenberg and Kohn paper is that insight into the
problem of exchange and correlation became the essential
ingredient in the development of approximations.
Exchange and correlation e�ects are condensed into the
relatively simple expressions of present days functionals
and can sometimes be explained by a few general condi-
tions for EXC [30, 46]. This is a signi®cant advance in our
understanding of electronic structure provided by DFT.

It is often said that the lack of a systematic procedure
to improve the accuracy of an approximate density
functional is a disadvantage of DFT; however, at a high
level of accuracy probably any systematic approxima-
tion scheme for the correlation energy produces a con-
siderable amount of information which is not relevant
for the problem at hand. The lack of a systematic pro-
cedure to construct density functionals and the know-
ledge of its existence motivates us to uncover the
essentials of electronic structure. Often it turns out that
di�cult problems in wavefunction theory can be solved
with simple density functionals and, in other cases,
computationally inexpensive wavefunction methods in-
crease the accuracy of approximate density functionals.
We expect that in the foreseeable future electronic
structure theory will bene®t from new ideas emerging
from the synthesis of DFT and wavefunction theory.
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